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ABSTRACT 
 

Model calibration refers to a family of inverse 
problem-solving numerical techniques used to infer 
the value of parameters from test data sets. The 
purpose of model calibration is to optimize parametric 
or non-parametric models in such a way that their 
predictions match reality. In structural dynamics an 
example of calibration is the finite element model 
updating technology. Our purpose is essentially to 
discuss calibration in the broader context of model 
validation. Formal definitions are proposed and the 
notions of calibration and validation are illustrated 
using an example of transient structural dynamics that 
deals with the propagation of a shock wave through a 
hyper-foam pad. An important distinction that has not 
been made in finite element model updating and that 
is introduced here is that parameters of the numerical 
models or physical tests are categorized into input 
parameters, calibration variables, controllable and 
uncontrollable variables. Such classification helps to 
define model validation goals. Finally a path forward 
for validating numerical model is discussed and the 
relationship with uncertainty assessment is stressed. 
 
1. INTRODUCTION 
 

Today’s computational resources make it more 
than ever possible to model and analyze phenomena 
characterized by complex geometries and boundary 
conditions, multi -physics, nonlinear effects and 
variability. An example of such resource is the U.S. 

Department of Energy’s Accelerated Strategic 
Computing Initiative (ASCI) that has developed several 
platforms able to sustain over 3 Tera-OPS, that is, 
3x10+12 floating point operations per second, by 
distributing computations over arrays of more than 
6,000 processors. Reference [1] discusses the overall 
ASCI program and its objectives. Examples of 
problems requiring access to these multi -physics 
codes and massively parallel architectures include 
global climate prediction, epidemics modeling, 
computational molecular dynamics, thermo-nuclear 
physics and complex engineering simulations. 
 

Obviously the hypothesis sustaining the 
development of ASCI-class computing resources is 
that predictive accuracy can be achieved if enough 
details and physics can be included in the simulation. 
For example constitutive models at the microscopic 
and nano-scale levels based on “first principle 
physics” such as statistical quantum mechanics are 
increasingly investigated. The intent is to capture the 
physics of interest at its source rather than relying on 
global and somewhat arbitrary approximations such 
as, for example, modal damping ratios in solid 
mechanics. 
 

In the field of structural dynamics computational 
models are developed for predicting the response of a 
system when the phenomenon is not accessible by 
direct measurement or numerical simulations are 
cheaper than testing. To develop high-fidelity models 
analysts increasingly account for nonlinear behaviors 
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and variability. However implementing sophisticated 
models does not guarantee the accuracy of their 
predictions. It must be verified that the discretization, 
mathematical idealization, computational errors and 
other assumptions involved yield a satisfactory 
solution. This is usually referred to as “model 
validation” and carried out by comparing the model’s 
prediction to test data. If the agreement between 
measurements and predictions is not satisfactory, 
input parameters are optimized to improve the 
model’s predictive quality.  
 

In this publication such definition of “model 
validation” is challenged. The reason is because 
predicting a measured response does not necessarily 
provide accuracy throughout the design or operational 
space. The notion of design space is illustrated in 
Figure 1 where, for simplicity, the structural dynamics 
model is denoted by the input-output relationship 
 

y = M(p1;p2)                              (1) 
 
where p1 and p2 denote two of the model’s input 
parameters and y denotes a scalar prediction, also 
referred to as the output feature. In modal analysis, for 
example, the input parameters p1 and p2 might 
represent a beam’s moments of flexure EI and the 
output feature might represent the first bending 
frequency. Models considered in equation (1) can 
range from general-purpose finite element analyses to 
simple polynomial models. For computational 
efficiency and visualization simplicity, it is often 
advantageous to replace physics-based models with 
surrogates as discussed in Reference [2]. 
 

 
Figure 1. Conceptual illustration of a model and 

comparison between measurement and prediction. 
 

Figure 1 illustrates a good agreement between 
model prediction and test data at one location (p1;p2) in 
the design space. The conventional paradigm of 

“model validation” is that, to obtain an accurate 
prediction, the parameters (p1;p2) or the form of the 
computational model can be optimized in such a way 
that the distance between measured and predicted 
features is minimized. Here such optimization 
procedure is called model calibration. 
 

Calibration is the main concept behind the 
development of finite element model updating 
methods. Its main drawback is that, in general, no 
conclusion about the model’s predictive quality can be 
made away from the calibration point. This issue has 
been addressed by repeating calibration experiments 
at various points in the design space. One example in 
structural dynamics is pseudo-testing where 
receptance functions are modified to generate 
additional data sets without requiring further testing [3, 
4]. However this tends to reduce the concept of model 
validation to a series of calibration experiments, which 
we claim it is not. In addition calibration techniques, 
with a few exceptions, do not provide any statistical 
assessment of the prediction’s accuracy.  
 

The first objective of this publication is to discuss 
parametric calibration in the broader context of model 
validation. To stress the difference between calibration 
and validation, we find it necessary to separate the 
model’s variables into input parameters and 
calibration variables. Calibration variables include 
controllable, uncontrollable or measured variables. 
Establishing a clear distinction between input 
parameters and calibration variables is not generally 
addressed in the field of finite element model updating 
although it is critical to the success of a model 
validation experiment. The distinction is illustrated in 
section 2 that briefly introduces a numerical simulation 
of transient structural dynamics. A similar discussion 
can be obtained from Reference [5] that deals with 
applications in hydrology and radiation management. 
Calibration and validation are formally defined in 
sections 3 and 4. Finally a path forward for model 
validation is discussed and the relationship with 
uncertainty assessment is stressed. 
 
2. HYPER-FOAM IMPACT TESTING 
 

One example of numerical simulation for 
transient dynamics is the Los Alamos impact 
experiment, or drop test, discussed in References [6] 
and [7]. This application involves the transmission of a 
shock wave through an assembly that consists of a 
steel cylinder and a layer of elastomeric, or hyper-
foam, material. 
 

Figure 2 pictures the hardware involved during 
impact testing. An assembly of elastomeric layer and 
steel cylinder is mounted on an impact table and 

Measured 
Response 
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dropped to generate the shock wave—the elastomeric 
layer sits underneath the steel cylinder and is barely 
visible in Figure 2. The input acceleration and three 
output accelerations are measured. The input 
acceleration is collected on the drop table and 
represents the acceleration inputted to the elastomeric 
layer-cylinder assembly. Three output accelerations 
are collected on top of the steel cylinder (see Figure 2). 
 

 
Figure 2. Impact test setup. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Illustration of the design space. 
 

Table 1. Drop test configurations. 
 Low drop 

(0.3 m) 
High drop 

(4.0 m) 
Thin pad 
(6.3 mm) 

Configuration 1 
(10 replicates) 

Configuration 3 
(5 replicates) 

Thick pad 
(12.6 mm) 

Configuration 2 
(10 replicates) 

Configuration 4 
(5 replicates) 

 
Foam layers of different thickness and several 

drop heights are considered during impact testing. 
The first configuration tested is defined with a 0.25-
inch (6.3 mm) thick elastomeric pad and a 13-inch (0.3 
m) drop height. Another pad of the same material but 

different thickness—0.50 inches or 12.6 mm—is used 
to perform additional physical experiments. Similarly 
testing is performed at a second drop height of 155 
inches (4.0 m). We refer to the pad thickness and drop 
height as the two input parameters p1 and p2, 
respectively. Combinations (p1;p2) of these parameters 
define a two-dimensional space illustrated in Figure 3. 
The two output features of interest are the peak 
acceleration value and the corresponding delay time 
between peak input and peak output. In Figure 3 the 
peak acceleration recorded at channel 1 is used as an 
example. Physical testing provides measurements for 
the four configurations identified with the numbers 1-4 
in Figure 3 and defined in Table 1. 
 

 
Figure 4. Variability obtained during testing. 

 

 
Figure 5. Variability of peak output at channel 1. 

 
In addition to testing various configurations each 

experiment is replicated several times to estimate the 
environmental variability. Table 1 provides the number 
of replicate experiments performed for each 
configuration. For example the first configuration 
where p1 = 6.3 mm and p2 = 0.3 m is tested ten times. 
Figures 4 and 5 illustrate the response variability 
obtained when “identical” tests are repeated for the 

Drop 
Height 

Pad 
Thickness 

Peak 
Acceleration 1 Mean of Measured Peak 

Acceleration Values 

1,530 g 

1 
2 

3 
4 
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first configuration. Figure 4 shows the input 
acceleration signal and three output acceleration 
signals collected during the ten replicates. Figure 5 
enlarges the view in the vicinity of output channel 1’s 
peak acceleration. 
 

The fact that significant variability is obtained 
when the “same” experiment is repeated ten times 
means that the recorded output varies randomly; that 
other, uncontrolled input parameters influence the 
output result; or a combination of both. None of these 
sources of variability can be ruled out a priori. An 
example of the first source—random output 
variability—is measurement error. Examples of the 
second source—input parameter variability—often 
encountered in experimental sciences are 
temperature and humidity. Indeed several input 
parameters were not controlled nor measured during 
the drop tests. They include the preload applied by the 
two tightening bolts visible on Figure 2 and the angles 
at which the carriage impacts the ground. It was later 
demonstrated that these parameters significantly 
influence the acceleration signals and are responsible 
for partially explaining the observed variability. Details 
of this analysis are provided in References [6] and [7]. 
The impact angles are referred to as uncontrolled 
parameters because they vary randomly from test-to-
test and their variation is not controlled nor measured. 
 

Table 2. Parameters of the numerical model. 
Factor Description Unit 

1 Pad thickness Millimeter 
2 Drop height Meter 
3 First angle of impact Degree 
4 Second angle of impact Degree 
5 Bolt preload N/m2 
6 Hyper-foam coefficient 1 Unit-less 
7 Hyper-foam coefficient 2 Unit-less 
8 Input amplitude Unit-less 
9 Static friction coefficient Unit-less 
10 Bulk viscosity coefficient Unit-less 

 
In the drop test example the main objective of 

numerical modeling is to develop a finite element 
representation of the system capable of predicting the 
system’s response with “acceptable” accuracy, not 
just at the four points in Figure 3 where physical tests 
were performed, but throughout the input space. 
Prediction accuracy is deemed sufficient if the 
numerical model can reproduce the observed data 
within the level of uncertainty visible in Figures 4-5. At 
the very least the numerical model should reproduce 
the mean behavior observed during testing as well as 
some of the statistics such as the response’s total 
variance and covariance structure. To achieve this 
result it is necessary that the most important sources 

of variability encountered during physical 
experimentation be taken into account in the model. 
Our simulation of the drop test is therefore 
parameterized with ten parameters listed in Table 2. 
 

It may seem like, starting from a two-dimensional 
space, we now have to account for ten—and maybe 
more—input parameters. However it is important to 
emphasize that the problem remains essentially two-
dimensional. The reason is because the main 
purpose of the simulation is to predict the system’s 
response as a function of pad thickness and drop 
height. Input parameters 3-10 in Table 2 represent 
additional variables introduced by the modeling effort. 
In the remainder they are referred to as calibration 
variables to stress the distinction with the two input 
parameters p1 and p2 we are genuinely interested in. 
Table 3 classifies the ten parameters in four sets 
according to whether they are genuine input 
parameters of the problem, controllable calibration 
variables, uncontrollable calibration variables or 
measured variables. 
 
Table 3. Current classification of input parameters. 
Factor & Description I C U M 
1, Pad thickness X    
2, Drop height X    
3, First angle of impact   X  
4, Second angle of impact   X  
5, Bolt preload   X  
6, Hyper-foam coefficient 1  X   
7, Hyper-foam coefficient 2  X   
8, Input amplitude    X 
9, Static friction coefficient  X   
10, Bulk viscosity coefficient  X   

I: input parameter; C: controlled; U: uncontrolled; M: 
measured. 
 

Table 4. Ideal classification of input parameters. 
Factor & Description S I C U M 
1, Pad thickness ++ X    
2, Drop height ++ X    
3, First angle of impact ++    X 
4, Second angle of impact +    X 
5, Bolt preload ++    X 
6, Hyper-foam coefficient 1 -  X   
7, Hyper-foam coefficient 2 -  X   
8, Input amplitude ++    X 
9, Static friction coefficient -  X   
10, Bulk viscosity coefficient -  X   

S: indicator of global sensitivity (“++” is high; “+” is 
medium; “-“ is low); I: input parameter; C: controlled; U: 
uncontrolled; M: measured. 
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Ideally all calibration variables should be 
eliminated from the analysis to reduce its 
dimensionality and leave only the relevant input 
parameters. Variables can be eliminated in three main 
ways. First parameter calibration techniques can be 
implemented to infer the value of a variable from 
experimental data sets. Secondly the physical 
experiment can, in some cases, be modified to 
provide more control over a previously uncontrolled 
variable. The best way to eliminate a variable, 
however, remains through direct measurement. This 
is reflected in Table 4 that illustrates an “ideal” 
situation where all significant calibration parameters 
are measured. By “significant” it is meant a parameter 
that largely contributes to the total output variability. 
Statistical techniques such as the analysis of variance 
(ANOVA) can assess the global influence of an input 
parameter throughout the design space [8]. In the 
case of the drop test, ANOVAs have demonstrated that 
calibration variables 3, 4, 5 and 8 contribute to the 
output variability more than any other. Ideally they 
should be measured during the experiment. Other 
variables, such as the material coefficients 6-7 and 
numerical coefficients 9-10, cannot be measured 
directly. However one advantage is that they 
characterize intrinsic properties of the hyper-foam 
material and are not expected to vary within the design 
space. The second best option would be to infer, or 
calibrate, their values from experimental data sets. 
 

Additional drop tests are being planned to reflect 
the ideal testing setup illustrated in Table 4 as 
opposed to the definition of past tests (Table 3). In 
particular the preload will be measured directly by 
instrumenting the bolt or inserting a piezoelectric 
washer. Values of the potentially non-zero angles of 
impact will be inferred through the procedure 
discussed in section 3. 
 
3. MODEL CALIBRATION 
 

Model calibration is defined as the optimization of 
input parameters and/or calibration variables such that 
the agreement between the measured and predicted 
responses is improved. In the field of structural 
dynamics such inverse problems are generally 
formulated as parametric optimization problems 
although other approaches are available for non-
parametric optimization or two-point boundary value 
problems [9]. The discrepancy between measured 
and predicted responses is expressed as a distance 
vector {e} such as 
 

{ } { } { }PredictedMeasured yye −=                     (2) 

 
For example {e} might collect the differences between 
measured and computed modal frequencies in linear 

structural dynamics. Then a cost function J is defined 
for minimization 
 

{ } [ ] { } { } [ ] { }dpSdpeSe 1
PP

T1
EE

T −− +=+ dp)J(p         (3) 

 
The definition of the cost function can be purely 
deterministic or include a representation of the 
uncertainty associated to the test data and variability of 
the calibration parameters. One such example is the 
Bayesian parametric inference documented, among 
others, in References [10] and [11]. The cost function 
can also represent a statistical test, such as the 
Kullback-Leibler entropy used in Reference [12] for 
discrimination and clustering analysis. Reviews of 
finite element model updating in structural dynamics 
are available from References [9] and [13]. 
 

In any case values of the model’s parameters 
are inferred from test data at one point in the design 
space. Inference does not provide information about 
the parameters away from the design point where the 
calibration experiment is performed. This is illustrated 
in Figure 6. At best calibration improves the predictive 
accuracy of the numerical model in the vicinity of one 
combination (p1;p2). In addition it is emphasized that 
the overall predictive accuracy of the model cannot be 
assessed through calibration only.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Prediction improvement via calibration. 
 

An example of model calibration is provided 
below for the hyper-foam application introduced 
previously. The purpose of this example is to 
emphasize that calibration does not validate model 
predictions in any way and that calibration results 
should be confirmed with independent investigations 
as much as possible. 
 

In the case of the hyper-foam impact application, 
surrogate models are developed to establish a 

p2 

Total 
Prediction 
Error STotal 

Improvement 
Brought by 
Calibration 

p1 

Prediction 
Error Before 
Calibration 

 
 

Prediction 
Error After 
Calibration 
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simple, polynomial relationship between the eight 
calibration variables of Table 2 and six output features 
defined as the peak accelerations and times-of-arrival 
at the three output sensors [6-7]. Figure 7 illustrates 
one of these surrogate models for configuration 1 that, 
after careful design of experiments and ANOVA 
variable screening, takes the form of a quadratic 
polynomial. 
 

 
Figure 7. Surrogate polynomial model. 

 

 
Figure 8. Inference of the angles of impact. 

 
Variables of the finite element model are then 

calibrated using the six mean features obtained from 
the drop test measurements as the reference. The 
optimization provides values for the four most 
sensitive calibration variables—for example Figure 7 
shows that the inferred value of the second impact 
angle is equal to 0.7 degree—but such information is 
of little value to the analyst unless it can be verified by 
independent means. To verify that the calibration 
exercise provides reasonable results, the measured 
output acceleration signals are integrated numerically 
to obtain the positions versus time. Then a plane is fit 
through the displacement history of the three 
accelerometers as illustrated in Figure 8. The plane’s 

inclination provides an independent verification of the 
angle of impact. Remarkably a value equal to 0.65 
degree is obtained at the time of impact. This result 
indicates that our methodology of fitting surrogate 
models through an appropriate design of experiments 
[8, 14] and calibrating the unknown parameters 
seems to provide accurate results. 
 
4. MODEL VALIDATION 
 

Validation may be defined as the process of 
determining the degree to which the output of the 
simulation code agrees with the actual behavior of the 
physical system in a specified application. A formal 
definition is given in Reference [15] as 
 

“The substantiation that a model within its 
domain of applicability possesses a satisfactory 
range of accuracy consistent with the intended 
applications of the model.” 

 
This definition clearly identifies the three key issues of 
model validation: 1) A model is defined throughout a 
domain of applicability, or design space, and not just 
at a single operating point. 2) The application intended 
must be consistent with the model’s original purpose. 
3) Validation must be established through the 
assessment of confidence that the predictions are 
accurate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Concept of uncertainty quantification. 
 

The goal of model validation is therefore to 
specify the uncertainty in a prediction made by a 
simulation code for a hypothetical new experimental 
situation. Such definition confers a central role to the 
assessment, or quantification, of uncertainty. The 
concept is illustrated in Figure 9. At the design point 1, 
a validation experiment is performed and the total error 
between measured and predicted responses can be 
estimated. The central question is to estimate the total 

p2 

Total 
Prediction 
Error STotal 

Prediction 
Error at a 

Point Where 
Testing Has 
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Performed 

p1 

Prediction Error at a 
Point Where Testing 

is Not Available 

1 2 
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prediction error at the second design point where no 
experimental data are available. 
 

Uncertainty quantification (UQ) of a code’s output 
provides the metric needed to specify the degree of 
agreement between the simulation prediction and 
reality. The ultimate goal of the UQ process is to 
construct an uncertainty model for every component of 
the simulation code, which taken all together 
summarize how well the code’s predictions agree with 
all available experimental results. This same set of 
uncertainty models is used to estimate the 
uncertainties in code prediction of a new application 
(see Figure 9). It is emphasized that uncertainty 
models do not necessarily have to be statistical in 
nature. Other frameworks, such as the non-
probabilistic theory of information gap, might be more 
appropriate in cases of extreme uncertainty or scarce 
experimental data [16]. In the remainder, however, 
statistical models of uncertainty are assumed for 
simplicity. 
 

We have seen that a pre-requisite to model 
validation is that the total error between physical 
observation and model prediction be characterized. A 
possible path forward is now discussed. One 
approach is to break down the total error into individual 
components and estimate their probability information 
 

)N(0;Se
);pM(py

eyy

TotalTotal

21Predicted

TotalPredictedMeasured

=
=

+=
                      (4) 

 
For simplicity the error model is assumed Gaussian in 
equation (4). The main difficulty is that such error 
model N(0;STotal) must be derived over the entire 
design space—which means that the total variance 
S2

Total is a function of the model’s input parameters 
(p1;p2)—with limited validation experiments. The 
analysis of a single test, which is typical of a 
calibration experiment, will not permit to derive an error 
model valid over the entire design space. The total 
variance S2

Total between measurements and 
predictions can be decomposed if independent 
Gaussian processes are assumed 
 

2
M

1,2i

2
i

2
D

2
T

2
Total SSSSS +++= ∑

=

                  (5) 

 
Equation (5) states that there are several independent 
components that contribute to the total error. For 
example the total error might include a measurement 
error of variance S2

T, discretization error of variance S2
D 

and parametric variability of variance S2
j—Sj denotes 

the output feature’s standard deviation due to 
variability of the jth parameter pj. The total variance 

S2
Total can be obtained from a comparison of 

measured and predicted responses for a design of 
experiments that attempts to explore the input space 
as much as possible. Components such as S2

T and 
S2

D are estimated by investigating the measurement 
system and mesh convergence properties, 
respectively. The variability S2

j of the output due to input 
parameter uncertainty is typically identified through an 
input-output effect analysis [8, 14, 17]. In equation (5) 
the only term that remains unknown, SM, represents 
the residual sources of uncertainty that include, for 
example, model form error. Obtaining an estimation of 
model form error is critical to assess the validity of the 
numerical model over its domain of applicability. Once 
available the probability information N(0;SM) can be 
combined with the code’s output to assess confidence 
bounds associated with a new prediction of the model. 
 
5. CONCLUSION 
 

Model calibration—also known as finite element 
model updating in structural dynamics—is discussed 
in the broader context of model validation. Formal 
definitions are proposed and the notions of calibration 
and validation are illustrated using one example of 
transient structural dynamics. A distinction is 
introduced between input parameters and calibration 
variables. The former define the input space in which 
the model must be exercised and validated. The latter 
are generally introduced by the modeling process and 
should be eliminated through calibration and direct 
measurement as much as possible. 
 

A possible formulation of model validation is 
introduced. It is based on the assessment of total 
discrepancy between test data and numerical 
predictions. The total error is broken down into 
independent components, each evaluated over the 
entire design space if enough experiments are 
available. This methodology is currently being pursued 
with the hyper-foam impact experiment and 
preliminary results will be reported in future 
publications. 
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